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Article Information Abstract 

Traditional cloud-centric architectures often suffer from high latency, 

limiting their effectiveness in autonomous driving applications. This 

study introduces an edge computing-based optimization framework that 

enhances real-time responsiveness through a hierarchical task offloading 

strategy across collaborative edge nodes. Perception and decision-making 

modules are modularized using Docker containers to ensure lightweight 

encapsulation, while Kubernetes is adopted for dynamic resource 

scheduling and scalable deployment. The proposed system is validated on 

the Baidu Apollo autonomous driving platform. Experimental results 

show a 23.6% reduction in end-to-end latency with only a 2.8% decrease 

in mean Average Precision (mAP) for object detection. The architecture 

also demonstrates strong scalability and deployment flexibility, offering 

practical value for engineering-level implementations of autonomous 

driving systems.
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1. INTRODUCTION 

Amid the accelerated transformation of intelligent 

transportation systems, autonomous driving 

technology is undergoing a critical transition from 

theoretical exploration to industrial deployment [1]. 

The Society of Automotive Engineers (SAE 

International) categorizes autonomous driving into 

six levels, from L0 to L5. Currently, Level 2 driving 

assistance systems have been widely integrated into 

the passenger vehicle market. Intelligent driving 

solutions, represented by Tesla Autopilot and NIO 

NOP, achieve partial automation in specific 

scenarios through the fusion of multi-sensor data and 

path planning algorithms [2,3]. However, 

breakthroughs toward Level 3 and higher levels—

characterized by highly automated and fully 

autonomous driving—still face core technical 

bottlenecks, notably in complex environment 

perception and real-time decision-making [4]. 

According to a forecast by MarketsandMarkets, the 

global autonomous vehicle market is projected to 

exceed USD 1.5 trillion by 2030 [5]. Achieving this 

industrial target urgently requires overcoming the 

real-time performance bottleneck, which not only 

determines the system's ability to respond to sudden 

road conditions but also directly affects road traffic 

safety and the user driving experience [6]. 

In the application of autonomous driving systems, 

traditional cloud computing architectures have 

gradually revealed inherent contradictions between 

their system frameworks and business requirements 

[7,8]. These architectures rely on uploading vast 

volumes of heterogeneous data collected by onboard 

sensors (such as LiDAR, cameras and millimeter-

wave radars) to the cloud for processing [9]. 

Although cloud data centers provide powerful 

computational capabilities for complex algorithmic 

operations, an insurmountable latency gap persists in 

the data transmission process [10]. According to the 

"2024 Global Autonomous Driving Network 

Latency White Paper," under a 4G network 

environment, the end-to-end latency from data 

acquisition to cloud processing results can reach up 

to 680 ms; even under 5G networks, the average 

latency remains around 220 ms. For vehicles 

traveling at a speed of 60 km/h, a one-second delay 

would result in an additional travel distance of 16.7 

meters, which could cause a missed opportunity for 

optimal decision-making in emergency braking or 

urban obstacle avoidance scenarios [11]. A recent 

simulation analysis of 500 autonomous driving 

accident cases shows that delays caused by cloud 

computing architecture accounted for as much as 

37% of the incidents [12]. Furthermore, issues such 

as bandwidth consumption during data transmission 

and dependency on network stability exacerbate 

system operational risks, highlighting the inherent 

limitations of traditional architectures in supporting 

real-time tasks [13]. Edge computing, as a next-

generation distributed computing paradigm, 

provides a revolutionary approach to addressing the 

real-time challenges faced by autonomous driving 

systems [14]. Its core concept is to migrate 

computing, storage, and network resources toward 

the network edge, building localized processing 

capabilities through onboard units (OBUs) and 

roadside units (RSUs), thus enabling proximate 
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computing and rapid response [15,16]. Recent 

research published by IEEE indicates that edge 

computing can reduce data processing latency by 

60% to 80%, significantly enhancing the system’s 

efficiency in dynamic environment perception [17]. 

In practical applications, RSUs can aggregate real-

time operational data from surrounding vehicles and 

obstacles, process the information locally to generate 

regional traffic situation awareness, and deliver 

decision suggestions to vehicles within milliseconds, 

thereby greatly improving system responsiveness 

[18]. Additionally, by minimizing long-distance data 

transmission, the edge computing architecture not 

only reduces the risk of data breaches—as noted in 

Qi An Xin’s "2023 Internet of Vehicles Security 

Report," where the adoption of edge computing 

decreased data leakage risks by approximately 

45%—but also enables the system to maintain 

autonomous operation capabilities during network 

failures, effectively enhancing system robustness 

[19,20]. 

Despite its significant application potential, the deep 

integration of edge computing in the autonomous 

driving field still faces multiple technical challenges 

[21]. The computational power and storage capacity 

of edge nodes are relatively limited, making it 

difficult to support the continuous, efficient 

operation of complex deep learning models [22]. For 

example, advanced object detection models such as 

YOLOv5 often experience significant frame rate 

reductions when deployed on edge devices due to 

insufficient computing resources [23]. In scenarios 

involving collaborative computing among multiple 

edge nodes, the dynamic resource scheduling 

mechanisms remain immature [24]. There is a lack 

of adaptive strategies for prioritizing different types 

of tasks (such as perception, decision-making, and 

control) and for allocating computing resources 

accordingly, resulting in potential node load 

imbalance. Furthermore, the deployment 

optimization of lightweight algorithm models on 

edge devices remains a major challenge, especially 

in achieving model parameter compression without 

significantly compromising detection accuracy [25]. 

Therefore, conducting in-depth research on real-time 

performance optimization of autonomous driving 

systems under edge computing architectures is not 

only an inevitable requirement for overcoming 

technical bottlenecks but also a fundamental driving 

force for advancing the commercialization of 

autonomous driving and reshaping the future 

transportation ecosystem. 

2. Methodology 

2.1. Design of a Heterogeneous Collaborative 

Architecture Based on Edge Computing 

A three-layer heterogeneous collaborative 

computing architecture comprising the cloud, edge, 

and terminal is constructed. On the terminal side, an 

On-Board Unit (OBU) with a computing capability 

of 14 TOPS (equipped with an NVIDIA Jetson 

Xavier NX) is deployed. The OBU is connected to 

one 20 Hz scanning LiDAR (160,000 points per 

frame), six cameras with a resolution of 1920×1080 

pixels (30 fps), and three millimeter-wave radars 

capable of detecting up to 200 meters (10 Hz). On 

the edge side, a Roadside Unit (RSU) with 50 TOPS 

of computing power is deployed, achieving vehicle-

road-cloud communication via 5G-V2X. A 
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hierarchical offloading strategy is adopted: after the 

OBU preprocesses sensor data, urgent low-latency 

tasks are processed locally, while more complex 

tasks are transmitted to the RSU. The RSU 

aggregates data from multiple vehicles to enhance 

perception accuracy. For ultra-large-scale tasks, the 

RSU collaborates with the cloud, uploading data for 

further processing and transmitting the results back 

to the vehicles, thereby forming an efficient 

processing chain. 

2.2. Modular Deployment Scheme Based on 

Container Technology 

Docker is utilized to encapsulate system modules 

such as perception, decision-making, and control 

into lightweight container images. The resource 

consumption of each module is summarized in Table 

1. 

Table 1. Resource Consumption of Functional Modules in the Autonomous Driving System 

Functional 

Module 

Average Container Memory 

Usage (MB) 

CPU Utilization Under 

Normal Load 

Perception Module 512 18%–25% 

Decision Module 480 15%–22% 

Control Module 450 12%–20% 

Container orchestration and scheduling are 

implemented based on Kubernetes by defining 

resource objects such as Pods and Services to 

establish a management framework [26]. The system 

can complete container scaling operations according 

to the load within 2.3 seconds, and achieves task 

collaboration and resource sharing among nodes 

through service discovery and load balancing 

mechanisms, thereby enhancing system scalability 

and fault tolerance. 

2.3.Optimization Strategy for Edge-Side 

Algorithm Models 

The perception algorithm adopts lightweight 

networks, namely MobileNetV3-Large and 

ShuffleNetV2-1.5x, in combination with knowledge 

distillation techniques. The key performance 

indicators of the models before and after 

optimization are compared, as summarized in Table 

2. 

Table 2. Performance Comparison of the Perception Algorithm 

Model 

Number of 

Parameter

s 

Reduction Ratio 

of Parameters on 

COCO Training 

Set 

Test mAP 

on 

Cityscapes 

Dataset 

Difference 

from 

Teacher 

Model mAP 

YOLOv5s (Teacher 

Model) 
7.3M – – – 
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MobileNetV3-Large 5.4M 26% 72.3% 3.5% 

ShuffleNetV2-1.5x 2.2M 69% 68.7% 5.1% 

The decision-making algorithm was improved by 

introducing heuristic search and vehicle dynamics 

constraints into the RRT algorithm [27]. In simulated 

urban road tests, the performance of the path 

planning algorithm before and after optimization was 

compared, as summarized in Table 3. 

Table 3. Performance Comparison of the Path Planning Algorithm Before and After Optimization 

Algorithm Path Planning Time (ms) Speed Improvement Rate 

A* Algorithm 820 – 

Improved RRT Algorithm 150 81.7% 

3. Results and Discussion 

3.1 Experimental Environment and Testing 

Scheme 

A testing environment was established based on the 

Baidu Apollo platform, with the experimental 

vehicle configuration consistent with the system 

architecture design [28,29]. The RSU communicated 

with the vehicles via 5G, providing 800 Mbps 

bandwidth and 15 ms latency. Typical scenarios, 

including urban roads and highways, were 

configured, and each scenario was tested in 50 

repeated trials. Performance indicators such as end-

to-end latency, mAP value, and decision-making 

accuracy were monitored to compare the traditional 

cloud computing architecture with the proposed 

solution in this study. 

3.2 Analysis of Experimental Results 

The experimental results are presented in the 

following table, providing a clear comparison of the 

performance differences between different 

architectures across typical scenarios: 

Table 4. Performance Comparison of Different Architectures in Typical Scenarios 

Test 

Scenario 

Architecture 

Type 

End-to-

End 

Latency 

(ms) 

Data 

Transmission 

Latency (ms) 

Computation 

Processing 

Latency (ms) 

Target 

Detection 

mAP 

Urban 

Road 

Traditional 

Cloud 

Computing 

Architecture 

450 280 170 98.5% 
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Urban 

Road 

Proposed 

Edge 

Computing 

Architecture 

344 80 264 95.7% 

Highway 

Traditional 

Cloud 

Computing 

Architecture 

380 250 130 97.8% 

Highway 

Proposed 

Edge 

Computing 

Architecture 

290 70 220 95.0% 

In terms of latency performance, the edge computing 

architecture proposed in this study demonstrates 

significant optimization effects. In the urban road 

scenario, the average end-to-end latency under the 

traditional cloud computing architecture was 450 ms, 

while the proposed scheme reduced it to 344 ms, 

achieving a reduction of 23.6%. In the highway 

scenario, the latency was reduced from 380 ms to 

290 ms, also achieving a substantial decrease. 

detailed analysis of the latency composition reveals 

that the data transmission latency decreased sharply 

from 280 ms to 80 ms, representing a reduction of 

71.4%. This fully illustrates the advantage of edge 

computing in processing data closer to the network 

edge, thereby reducing long-distance transmission 

delay. Although the computation processing latency 

increased from 170 ms to 264 ms, with an increase 

of 55.3%, the significant reduction in transmission 

latency still enabled effective control of the overall 

latency. This demonstrates that through reasonable 

task offloading and resource scheduling strategies, it 

is possible to enhance the system's overall response 

speed even with limited computing resources at edge 

nodes [30]. Compared with recent studies published 

in IEEE Transactions on Intelligent Transportation 

Systems, where most achieved only 15%–20% 

latency reduction, the proposed scheme shows a 

clear advantage in latency optimization, further 

confirming its effectiveness [31]. Regarding target 

detection accuracy, the performance of lightweight 

models under the edge computing architecture is 

noteworthy. Taking pedestrian detection as an 

example, the traditional YOLOv5s model achieved a 

recognition accuracy of 96.5%, whereas the 

lightweight MobileNetV3-Large model achieved 

95.2% under the proposed architecture [32]. Overall, 

the optimized model's mAP decreased by only 2.8% 

compared to the traditional model. Although a 

certain degree of accuracy loss was observed, the 

application of knowledge distillation techniques 

effectively limited this decline, ensuring that the 

model still met the practical application requirements 
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of autonomous driving systems when deployed at 

edge nodes [33]. This result verifies the feasibility of 

applying lightweight models combined with 

knowledge distillation in edge computing scenarios 

and provides practical support for deploying efficient 

perception models on resource-constrained edge 

devices [34]. Compared with current mainstream 

edge-side perception model optimization studies, 

although some approaches achieve higher model 

compression rates, the associated accuracy losses 

often exceed 5%. The proposed scheme exhibits 

better performance in balancing accuracy and 

efficiency. In terms of decision-making accuracy, the 

improved RRT algorithm demonstrates significant 

performance enhancement. In 100 simulated 

intersection decision tests, the traditional path 

planning algorithm resulted in 18 decision errors, 

while the improved RRT algorithm resulted in only 

6 errors, leading to a 12% improvement in decision 

accuracy. In various testing scenarios, the optimized 

decision-making algorithm consistently generated 

feasible paths quickly. This improvement is 

attributed to the introduction of heuristic search 

strategies and the incorporation of vehicle dynamics 

constraints, allowing the algorithm to more 

accurately evaluate path feasibility in complex traffic 

environments and significantly enhance decision-

making reliability. Compared with the traditional A* 

algorithm and other improved path planning 

algorithms, the proposed scheme not only ensures 

path planning quality but also greatly shortens 

computation time, providing strong support for real-

time decision-making in dynamic environments for 

autonomous vehicles. 

3.3 Discussion of Results 

The experimental results of this study fully verify the 

effectiveness of the edge computing-based 

optimization scheme for autonomous driving 

systems in enhancing real-time performance. By 

leveraging distributed computing and collaborative 

processing among edge nodes, the system 

successfully reduced its dependence on remote cloud 

computing and significantly improved its overall 

response speed. At the same time, a good balance 

was achieved between model accuracy and decision-

making precision. Nevertheless, some issues 

revealed during the experiments point to directions 

for future research. The problem of insufficient 

computing capacity at edge nodes is particularly 

pronounced under high-concurrency scenarios. 

When the node load exceeds 80%, the average task 

processing latency increases from 50 ms to 120 ms, 

indicating that the current computing resources of 

edge nodes face bottlenecks in handling large-scale 

data processing tasks. Future research should further 

explore dynamic computing resource scheduling 

mechanisms for edge nodes, such as reinforcement 

learning-based dynamic resource allocation 

strategies that can adjust computing resources in real 

time according to task priorities and node loads, thus 

enhancing system stability under heavy load 

conditions. Moreover, optimizing collaborative 

computing across multiple edge nodes is also critical. 

By building edge node clusters to realize resource 

sharing and task collaboration among nodes, the 

overall processing capacity of the system can be 

significantly improved. The imperfection of data 

security protection mechanisms remains another 
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major challenge for applying edge computing in the 

autonomous driving domain. Although edge 

computing reduces part of the security risks by 

minimizing long-distance data transmission, edge 

nodes in vehicular networks are still exposed to 

threats such as data leakage and malicious attacks. 

Future research should strengthen the construction of 

a security protection system across the terminal-

edge-cloud architecture, integrate blockchain 

technology to realize secure data storage and 

transmission, and employ encryption algorithms and 

access control mechanisms to protect sensitive data, 

ensuring the security and reliability of autonomous 

driving systems based on edge computing 

architectures. In addition, the generalizability of the 

proposed scheme across different traffic scenarios 

still requires further verification. Although good 

results were achieved in urban road and highway 

scenarios, the system’s performance may be affected 

under extreme weather conditions (such as heavy 

rain or snow) and complex traffic events (such as 

road construction or traffic accident scenes). Future 

work should collect more data from special 

scenarios, further optimize algorithm models, and 

improve the system’s adaptability to complex 

environments. From a broader perspective, the 

results of this study provide an important reference 

for the transition of autonomous driving systems 

from theoretical research to practical application. 

The findings promote the deep integration of edge 

computing technology with autonomous driving, are 

expected to accelerate the industrialization of 

autonomous driving, and will have a profound 

impact on the future development of intelligent 

transportation systems. 

4. Conclusion 

This study proposed an edge computing-based 

optimization scheme for autonomous driving 

systems to address the latency bottlenecks inherent 

in traditional cloud computing architectures, and 

conducted empirical validation based on the Baidu 

Apollo platform. Experimental data show that in the 

urban road scenario, the proposed scheme reduced 

the system’s end-to-end latency from 450 ms to 344 

ms, achieving a reduction of 23.6%; in the highway 

scenario, the latency was optimized from 380 ms to 

290 ms. In terms of maintaining target detection 

accuracy, the lightweight model’s mAP decreased by 

only 2.8% compared to the traditional model, with 

pedestrian detection accuracy slightly declining from 

96.5% to 95.2%, and the accuracy loss was 

effectively controlled through the application of 

knowledge distillation techniques. Regarding 

decision-making accuracy, the improved RRT 

algorithm reduced the number of decision errors 

from 18 to 6 in 100 simulated intersection decision 

tests, resulting in a 12% improvement in decision-

making accuracy. Meanwhile, the scheme utilized 

Docker containers and Kubernetes to achieve 

modular deployment and dynamic resource 

scheduling, demonstrating excellent architectural 

scalability and deployment flexibility. In practical 

engineering applications, it is necessary to flexibly 

adjust task offloading strategies and resource 

scheduling schemes according to the characteristics 

of different traffic scenarios and the resource 

configurations of edge nodes, in order to achieve 
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optimal system performance. Future research will 

focus on the deep integration of edge computing and 

artificial intelligence technologies, exploring 

intelligent collaborative computing mechanisms 

among edge nodes, aiming to address critical issues 

such as the computing power bottleneck of edge 

nodes and data security protection. These efforts are 

expected to further enhance the system’s real-time 

performance, safety, and reliability in complex 

environments, provide strong technical support for 

the commercialization and large-scale deployment of 

autonomous driving technologies, and promote the 

development of autonomous driving technology 

toward a higher stage. 
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